

Contents

Contents
Legal Notice... v

Trademark Statement... v
Disclaimer...v
Note..v

Preface... vii
Audience...vii
Conventions.. vii

1 About PieCloudDB Community Edition.. 1
Product Edition Differences.. 1
Related Documentation..1

2 Introduction to PieCloudDB.. 3
2.1 Overview of PieCloudDB... 3
2.2 System Architecture..5
2.3 New Features... 12

3 Deploy PieCloudDB Community Edition... 19
3.1 Overview of PieCloudDB Community Edition Deployment............................. 19
3.2 Deploy PieCloudDB Using the Online Installer..20
3.3 Deploy PieCloudDB Using the Offline Installer..20
3.4 Connect to PieCloudDB Using the psql Command for Testing....................... 22

4 Manage PieCloudDB...23
4.1 Overview of PieCloudDB Management..23
4.2 Add a New Virtual Data Warehouse... 23
4.3 Start a Virtual Data Warehouse.. 24
4.4 Stop a Virtual Data Warehouse.. 24
4.5 Resize a Virtual Data Warehouse..25
4.6 Configure Virtual Data Warehouse GUC..26
4.7 View Virtual Data Warehouse Details... 26
4.8 Connect to a Virtual Data Warehouse Using a Client.................................... 27

5 Import and Export Data..31
5.1 Import Data.. 31
5.2 Export Data Using COPY TO..33
5.3 Format Data Files... 34
5.4 Character Set.. 37

6 Glossary.. 39
A... 39
C... 39

iii

Contents

D...39
E... 40
G...41
H...41
J.. 41
M.. 41
Q...42
S... 42
T... 43
V... 43

iv

Legal Notice

Legal Notice
Copyright © Hangzhou OpenPie Technology Development Co., Ltd.

This manual is only an informational introduction and help manual for the
software products involved. This manual cannot be used as a basis for a
comprehensive judgment on whether the software product has or does not have
certain functions and/or technical parameters, nor can it be used to determine
whether the software product meets certain requirements, technical tasks and/or
parameters and other third-party specification documents.

All information in this manual is owned by Hangzhou OpenPie Technology
Development Co., Ltd. (hereinafter referred to as "OpenPie" or "TuoShuPai")
and can only be used by product purchasers. No part of this manual may
be copied, tampered with, reproduced on network resources or disseminated
through communication channels or in mass media without the prior written
permission of OpenPie.

For the products described in this manual, unless the permission of the right
holder is obtained, no one may copy, distribute, modify, extract, decompile,
disassemble, decrypt, reverse engineer, rent, transfer, sublicense, or infringe the
copyright of the software in any form.

Trademark Statement
OpenPie、PieCloudDB、πCloudDB、PieDataCS、πDataCS and other OpenPie-
related trademarks are registered trademarks of OpenPie in mainland China.
Other registered trademarks, logos and company names mentioned in this
document are owned by their respective owners.

Disclaimer
In any case, OpenPie shall not be liable for any possible errors and/or omissions
in this document and any losses (direct or indirect losses, including unearned
profits) caused by the purchaser of the product.

Note
Certain features and functions of the products and accessories described in this
manual depend on the design and performance of the local network and the
environment in which you install them; the products in this manual have been
tested in detail, but cannot be guaranteed to be fully compatible with all software
and hardware systems, and cannot be guaranteed to be completely error-free.

v

Legal Notice

This manual is for reference only and does not constitute any form of commitment.
Please refer to the actual presentation of the product-related content during use.
OpenPie reserves the right to modify any information in this manual at any time
without prior notice and without any responsibility.

vi

Preface

Preface
This documentation outlines the process for installing, configuring, and using
PieCloudDB Community Edition. It is designed to assist database administrators
and other IT professionals in understanding PieCloudDB and cloud-native
database technology.

The documentation is organized into several sections:

• Introduction to PieCloudDB Community Edition
• Overview of PieCloudDB
• Deploy PieCloudDB Community Edition
• Manage PieCloudDB
• Import and Export Data
• Glossary

Audience
This document serves as a reference guide for administrators and operators of
the PieCloudDB database system, aiming to enhance their management and
operational capabilities when working with PieCloudDB.

It is presumed that readers possess knowledge in Linux/Unix system
administration, data management systems, database administration, and are
familiar with the SQL language.

Conventions
The following conventions are used in this document:

Convention Note

Dangers Indicates that a serious failure or problem could
arise and may result in a total system breakdown or
unstable operation.

Warning Indicates that a significant issues or anomalies
may arise, potentially impacting the system's
functionality or performance noticeably, but the
system should remain operational.

Attention Indicates that issues or anomalies may arise and
are not expected to have a significant impact on
normal system operations. However, such alerts
require attention from users.

Tip Provide additional information, guidance, or
supplementary explanations as needed.

> Hierarchical menu path.

Boldface User Interface (UI) elements like buttons or menus.

vii

Preface

Convention Note

monospace Commands, URLs, code in examples, text output on
the screen, or text input.

Italic Parameters or variables.

viii

1 About PieCloudDB Community Edition

1 About PieCloudDB Community Edition
PieCloudDB Community Edition introduces a one-command, containerized
deployment solution that is seamless, integrating the robust PieCloudDB core
engine with the PieCloudDB Cluster Controller (PDBCC).

This edition is designed to support flexible deployment options, both online and
offline, enabling users to quickly utilize the main capabilities of PieCloudDB.
These capabilities include high elasticity; multi-tenancy support; multi-cluster
management; separation of storage and computing resources; and an extensive
array of ecosystem components.

Available as a free download, the Community Edition is an ideal choice for users
looking to explore product features, engage in personal learning endeavors,
or conduct PoC (Proof of Concept) validations. It provides a platform for the
community to immerse themselves in the cutting-edge technology of data
warehouse virtualization.

Product Edition Differences
PieCloudDB Community Edition lacks access to some of the advanced features
that are standard in the enterprise and Cloud on Cloud (COC) editions, including
but not limited to:

• An intuitive graphical interface for managing virtual data warehouses and
governing data development;

• Advanced data import and export tools, such as Dataflow and Flink CDC;
• A suite of operational tools for monitoring and alerts, usage and billing, etc.;
• PieProxy, a visualization tool for external access;
• Backup and restore solutions for both system and user data;
• High availability and disaster recovery protocols for all components;
• Detailed resource allocation and isolation for CPU, memory, and IO at the node

level of the virtual data warehouse;
• The ability to deploy across multiple physical machines;

If you're looking for a more immersive experience with these features, welcome
to have a free trial of PieCloudDB's Cloud on Cloud Edition, please visit https://
app.pieclouddb.com, or get in touch with us to explore the advanced capabilities
of PieCloudDB's Enterprise Edition.

Related Documentation
For an overview of PieCloudDB, please refer to the following documents:

• Overview of PieCloudDB

1

https://app.pieclouddb.com
https://app.pieclouddb.com

1 About PieCloudDB Community Edition

• System Architecture

For deployment and management features of the PieCloudDB Community Edition,
please visit the following documents:

• Deploy PieCloudDB Community Edition

• Deploy PieCloudDB Using the Online Installer
• Deploy PieCloudDB Using the Offline Installer

• Manage PieCloudDB

• Add a New Virtual Data Warehouse
• Start a Virtual Data Warehouse
• Stop a Virtual Data Warehouse
• Resize a Virtual Data Warehouse
• Configure Virtual Data Warehouse GUC
• View Virtual Data Warehouse Details
• Connect to a Virtual Data Warehouse Using a Client

• Import and Export Data

2

2 Introduction to PieCloudDB

2 Introduction to PieCloudDB

2.1 Overview of PieCloudDB
PieCloudDB, the first data computing engine of OpenPie's Data Computing
System, known as the PieDataComputing System (PieDataCS), is a cloud-native
database system leveraging cloud computing and containerization technologies.

With its new elastic Massively Parallel Processing (eMPP) architecture, which
separates storage and computation resources, PieCloudDB provides extreme
flexibility, high scalability, and unbreakable security, achieving optimal cloud
resource allocation.

Currently, PieCloudDB offers Cloud on Cloud (Serverless) Edition, Community
Edition, and Enterprise Edition. For detailed product edition information and
differences, please refer to the OpenPie Website.

Core Product Features
• Multi-dimensional Scalability and Elasticity

PieCloudDB adopts a new eMPP (elastic Massive Parallel Processing)
architecture that separates storage and computation, allowing for elastic and
large-scale, parallel processing.

For storage, it supports a standard object storage system, which can fully
leverage the advantages of cloud computing platforms, offering virtually
limitless capacity.

For computation, the stateless design enables compute nodes to tap into
the vast pool of cloud-based compute nodes, expanding and contracting as
needed. This ensures that the system can scale horizontally, vertically, and at
the cluster level, according to changes in user business requirements and data
volumes.

• High Availability Capability

PieCloudDB is built on a highly available architecture that separates metadata,
computation, and data into three distinct layers. This separation allows
for independent management of cloud-based storage and computational
resources, including the dynamic allocation of compute resources.

In the event of a compute node failure, the system automatically detects the
issue and swiftly reallocates a new node to replace the faulty one. Each piece
of metadata is distributed across multiple service nodes in the form of multiple
replicas and is regularly backed up to prevent data loss.

The integrity, consistency, and reliability of stored data are safeguarded by
the distributed storage's multiple replicas, erasure coding (EC), and disaster

3

https://www.openpie.com/product-version

2 Introduction to PieCloudDB

recovery capabilities, which reduce the likelihood of data loss due to human
error or natural causes. This ensures that the failure of a single hardware
component does not impact business operations.

• Lakehouse Integration Analysis

PieCloudDB integrates a lakehouse architecture through its distributed
computing engine and data interfaces, bridging the gap between data lakes
and data warehouses. Its built-in Foreign-Data Wrapper (FDW) module allows
users to access external data from sources such as HDFS, MySQL, and Oracle.

PieCloudDB supports the development of custom analysis modules using
procedural language (PL) and is compatible with mainstream big data
processing frameworks like Spark and Flink.

• Comprehensive SQL Compatibility

PieCloudDB offers high compatibility with the SQL:2016 standard, full support
for the SQL:1992 standard, and broad support for the SQL:1999 standard. It also
provides partial support for the SQL:2003 standard, with an emphasis on OLAP
features.

Additionally, PieCloudDB is compatible with the PostgreSQL protocol and
supports standard database interfaces such as ODBC and JDBC.

Application Scenarios
• Diverse Data Processing

The flexible and scalable data engine of PieCloudDB integrates a variety of
databases and data processing methods. These include relational database
SQL, stream and batch processing using Spark/Flink, vector databases with
Large Language Models (LLMs), and GIS geographical databases. Users can
choose the most suitable data storage and processing methods based on their
specific needs.

• Ad-hoc Queries and Real-time Analysis

PieCloudDB supports ad-hoc queries and real-time analysis techniques;
it allows for flexible data exploration and analysis according to user
requirements, making it suitable for scenarios that require real-time monitoring
and decision support.

• Advanced Analytics and Machine Learning

PieCloudDB offers a suite of advanced analytical functions, such as window
functions and complex aggregation functions, to support an intricate data
analysis and calculations. Users can leverage PieCloudDB for data exploration,
feature engineering, and model training to facilitate machine learning and
data-driven decision-making.

• Data Sharing and Analysis

PieCloudDB provides a unified environment for data management and
analysis, supporting multi-model data processing-including structured, semi-

4

2 Introduction to PieCloudDB

structured, and unstructured data-data sharing, and analysis. This enables
businesses and organizations to better utilize various types of data to support
decision-making and innovation.

2.2 System Architecture

2.2.1 Overview of System Architecture
PieCloudDB utilizes a new eMPP (elastic Massive Parallel Processing) architecture,
which adds elastic—a new dimension—to the traditional MPP (Massive Parallel
Processing). With this architecture, PieCloudDB is capable of concurrent task
execution across multiple clusters, offering the flexibility to scale the virtual data
warehouse up or down. It efficiently adapts to load variations, allowing the scale
of computation to dynamically match the scale of data, easily handling massive
datasets at the petabyte (PB) level.

Compared to traditional OLAP databases, the cloud-native, distributed database
PieCloudDB offers the following advantages:

• Storage-computing separation architecture that is highly scalable and
supports rapid, elastic scaling.

• Shared storage architecture, compatible with Amazon S3, HDFS, NAS, and other
protocols, ensuring high availability of data storage.

• Intelligently and efficiently generates statistical information and query plans,
supporting advanced features like Aggregation Pushdown, Pre-Computation
and Data Skipping, to fully meet the demands of complex analytical queries.

• Utilizing an efficient hybrid row-column storage format and a vectorized engine
greatly enhances computational speed.

• Compatible with PostgreSQL's protocol, syntax, and ecosystem.

The overall architecture of PieCloudDB is as follows:

5

2 Introduction to PieCloudDB

PieCloudDB features a three-layer architecture that separates metadata,
computing, and user data, achieving independent management of storage
and computing resources in the cloud. Cloud computing resources can be
dynamically allocated and initiated on-demand based on computing tasks, with
costs calculated based on usage time and scale.

2.2.2 Computing Layer
PieCloudDB's computing layer leverages eMPP technology to form a large pool
of computing resources from all compute nodes. Users can create cloud-native
virtual data warehouses (VDWs) on this resource pool, enabling multiple VDWs
to operate simultaneously and perform concurrent data processing. Additionally,
PieCloudDB can construct multiple VDWs to accommodate various business needs
based on workload demands.

A virtual data warehouse comprises executors and coordinators, each operating
their own independent computing clusters in a shared-nothing architecture.

During the execution of specific application requests, the coordinator oversees
the entire computing resource pool, dispatching optimized SQL queries to the
executors. The executors are tasked with executing these SQL queries, with
multiple executors conducting parallel computations and aggregating results
to return to the coordinator. The coordinator then compiles this information to
provide the final output back to the application.

As computational tasks for applications increase or the volume of data to be
processed grows, the demand for corresponding computing resources, primarily
CPU and memory (MEM), also rises. Virtual data warehouses can share computing
resources and achieve online elastic scaling based on the required computational
demands.

As illustrated in the figure, the number of executors can be scaled up from three
to four, and the process of scaling down adheres to the same principle.

6

2 Introduction to PieCloudDB

PieCloudDB's executors are stateless. In the event of parallel data processing
by multiple executors, if one fails abruptly, PieCloudDB employs a method of
'quick-fault detection --> quick-executor reconstruction' for fault recovery. This
process is concise, and interactions are expedited, minimizing the impact on
SQL execution and business operations, and ensuring the high availability of
PieCloudDB services.

Additionally, each compute node within the computing layer is equipped with a
multi-layer caching structure for both metadata and user data, which reduces
network latency and minimizes data movement. This design not only enhances
computational efficiency but also ensures that real-time requirements are met for
users.

2.2.3 Metadata Layer
PieCloudDB's metadata primarily serves to describe, manage, and control the
critical functions of the database and user data, which are managed using
a distributed KV storage system. PieCloudDB's independent metadata service,
known as the Catalog Service, ensures the efficiency and high availability of
metadata access.

The metadata service in PieCloudDB relies mainly on three components: the
metadata collector within the coordinator, the metadata cache within the
executor, and the metadata distributor, also within the coordinator. During
data distribution, the coordinator is responsible for analyzing user queries and
collecting and returning results; the executor is responsible for processing user

7

2 Introduction to PieCloudDB

queries and generating computational results. Both the coordinator and the
executor require metadata to accurately analyze and process user requests.

The general workflow of PieCloudDB's metadata service can be described as
follows: The metadata collector at the coordinator is responsible for collecting
data from the executors; the cache is tasked with storing the collected metadata
and analyzing the metadata necessary for executing current user queries; the
distributor is in charge of loading the updated metadata into the executors for
computation.

The metadata cache selects the appropriate caching mode based on the nature
of the query request. For specific metadata requests, it transitions intelligently
to a pre-computed mode, proactively calculating and caching results to reduce
the data movement overhead to the metadata distributor. For other types of
requests, it reverts to a standard data caching mode. Furthermore, the cache
categorizes metadata into 'hot' and 'cold' tiers based on frequency of access,
retaining frequently accessed 'hot' data in memory to improve cache hit rates.

The metadata collector and cache are linked to the coordinator, with each
coordinator's session launching an instance of both. Similarly, the distributor
is connected to the executor, and each coordinator's session also launches a
distributor instance.

As a key component of PieCloudDB's architecture, the metadata layer plays a
crucial role in supporting distributed and highly available services. It enables
cloud data warehouses to manage various inherent challenges in distributed
environments effortlessly. The layer provides robust support for data sharing,
user privileges, multi-virtual data warehouse concurrency, distributed locks, and
more.

2.2.4 Storage Layer
PieCloudDB's architecture incorporates a storage-computing separation model,
which allows the storage layer to operate relatively independently. This design

8

2 Introduction to PieCloudDB

enables the storage capacity to scale independently from the computing
layer. PieCloudDB supports various distributed storage solutions, such as object
storage, HDFS, and NAS, providing users with scalable and shared cloud storage
services for both user data and metadata.

JANM, which serves as the storage foundation for PieCloudDB's computing engine,
resides above the underlying data storage layer. Designed to be compatible
with various cloud environments, JANM is primarily intended for object storage,
utilizing this technology as the persistent storage layer.

In response to the distributed nature and elasticity of data within PieCloudDB's
eMPP architecture, JANM uses Consistent Hashing to ensure consistent data access
across each computing node in the distributed system. This approach minimizes
data cache migration, especially during scaling events. For data security, JANM
utilizes Transparent Data Encryption (TDE) technology, employing a three-tier key
system to ensure absolute data security.

The JANM storage system aims to provide a robust foundation for data
management and storage in high-performance computing systems across
various cloud scenarios. Its development is strategically planned in three phases:
first, to become the next-generation cloud-native storage engine; second, to
evolve into the cloud storage foundation for big data computing systems; and
third, to transform into a unified storage engine for data computing systems.
To date, JANM has successfully met the milestones of the first two stages in its
evolutionary journey.

The first stage of JANM's evolution is aimed at establishing it as the cloud-
native storage solution for PieCloudDB, a next-generation cloud-native virtual
data warehouse. Central to this is the self-developed janm file format, which
employs a hybrid row-column storage structure. This structure combines the
high performance of row storage with the compression efficiency and cache line
optimization of columnar storage. Furthermore, when reorganizing data, JANM
redefines the data format for both disks and memory, ensuring that there is no
additional overhead for data conversion between these storage media. The janm
storage format is illustrated in the figure below.

9

2 Introduction to PieCloudDB

The janm file format in JANM not only collects file statistics to accelerate queries
but also supports a variety of performance optimization features. These include
vectorized (SIMD) computation, parallel processing, and pre-computation. To
further enhance I/O performance, the janm file format integrates a variety of
compression algorithms, such as zstd and lz4. Additionally, JANM has been
extensively optimized for data reading and querying. It implements features
like data skipping, pre-computation-accelerated aggregation queries, Smart
Analyze, and TOAST, all of which significantly enhance the efficiency of data
loading and querying.

The second stage of JANM's evolution is aimed at establishing it as the cloud
storage foundation for data computing systems. Central to this system is the
JANM Table Format, which is structured into four distinct layers: Storage Access
Abstraction, File Format Abstraction, Table Format Foundation, and APIs and
Interfaces. Each layer depends on and extends the functionality of the layer
beneath it.

The hierarchical structure of the JANM Table Format is illustrated in the figure
below.

10

2 Introduction to PieCloudDB

The JANM Table Format is based on the Storage Access Abstraction layer, which
employs abstract APIs to interact with various types of storage, such as cloud
object storage (e.g., S3) and HDFS. This approach ensures broad compatibility
across all storage engines by leveraging its robust storage adapter interface
capabilities. Furthermore, JANM enhances storage functionality with features like
file system monitoring and a variety of read-write strategies.

The File Format Abstraction layer within the JANM Table Format supports a
multitude of file formats. This capability enables JANM to adapt to various file
formats while providing a unified access interface, simplifying data access and
allowing users to freely choose different file formats for storage within JANM.
Additionally, JANM's unique file layout design tracks all changes made to each file
and maintains a separate redo log. These features enable the implementation of
a broader range of functionalities.

The Table Format Foundation layer within the JANM Table Format is designed to
encapsulate and implement a variety of key features. It primarily encompasses
the transaction engine for the table, indexing, adaptive management of table
data, and the encapsulation of operations and controls related to the table
format.

The primary functions of the Table Format Foundation layer include the following:

• The transaction engine within the table employs Multi-Version Concurrency
Control (MVCC) at the file level, supporting database visibility assessments
based on isolation levels and ensuring effective concurrency control.

• Indexing enhances the database's ability to plan queries more efficiently,
thereby reducing overall I/O and providing faster responses. Currently, JANM
supports the necessary indexing for Data Skipping.

11

2 Introduction to PieCloudDB

In OLAP database scenarios, indexing information about file lists and columns
enables the OLAP engine to quickly generate efficient query plans.

• Adaptive data management primarily provides functions such as data cleaning
(Vacuum), data distribution information sampling (Smart Analyze), and small
file merging (Compaction), which can significantly enhance I/O efficiency.

• Encapsulating control and functionality related to table composition and layout
facilitates rapid file traversal and enables efficient data size statistics. It also
minimizes the overhead associated with list operations on files in object
storage.

The JANM Table Format also supports extensible programming interfaces, offering
a unified API for interacting with external services and accessing data. This
facilitates the integration of third-party applications with JANM. For table
application services, JANM provides stateless data management applications that
can be registered with any service, thereby enabling adaptive data management
across various platforms.

2.3 New Features

2.3.1 Flexible Gang
PieCloudDB's flexible gang feature enhances the ability of individual queries
to utilize underlying resources in parallel, thereby simultaneously speeding up
query response times.

Tip:

This feature is available in PieCloudDB version 2.14.0 and later versions.

Application Scenarios

The flexible gang feature is primarily applicable to scenarios that involve
individual SELECT queries.

Feature Details

Use the pdb_parallel_factor parameter to configure the number of gangs,
which determines the multiplier for the number of executor backends. The
total number of computing processes is calculated as 'number of executors *
pdb_parallel_factor', thereby enabling scalable parallelized queries.

The example below illustrates the working principle of this feature. First, execute
an EXPLAIN for a SELECT query involving three tables: t1, t2, and t3.

12

2 Introduction to PieCloudDB

By setting pdb_parallel_factor to 3, the concurrency of query execution is
increased, followed by the execution of an EXPLAIN analysis.

Upon examining the EXPLAIN output from the example, the parallelization of
queries has led to the following enhancements:

• The Gather Motion ratio has increased from 2:1 to 6:1, indicating that three
processes are now operating in parallel on each cluster executor.

• The Broadcast Motion ratio has improved from 2:2 to 6:6, demonstrating that
the broadcasting of each data set now utilizes six executors.

When the pdb_parallel_factor parameter is adjusted to values of 1, 2, 3, and
4, the execution time for the identical SELECT query is reduced progressively,
indicating a linear enhancement in query performance, as shown below.

13

2 Introduction to PieCloudDB

The pdb_parallel_factor parameter takes effect dynamically and its value
must be an integer. The value range is limited such that the product of 'the number
of executors * pdb_parallel_factor' must not exceed the number of CPU cores (not
the number of threads). The reference command is as follows:

=> SET pdb_parallel_factor to int_value;

2.3.2 Multi-process ic-proxy
PieCloudDB supports the multi-process operation mode of ic-proxy, which is used
to enhance the load balancing capabilities of distributed systems, increase the
data transfer capacity for Motion operations, and improve the parallel query
performance of the database.

Tip:

This feature is available in PieCloudDB version 2.14.0 and later versions.

Application Scenarios

In parallel execution, if the volume of Motion data is substantial, a single-process
ic-proxy can quickly reach a CPU usage rate of 100%. This can result in an
overloaded system and consequently degrade query performance.

In contrast, a multi-process ic-proxy effectively enhances load distribution
and optimizes network performance. This is instrumental in mitigating the

14

2 Introduction to PieCloudDB

performance bottlenecks typically associated with single-process parallel queries
when handling large datasets.

Feature Details

PieCloudDB's parallel computing is accomplished through a coordinator and
one or more executors. The coordinator is responsible for receiving, parsing,
and optimizing queries, while the executors carry out the tasks assigned by the
coordinator. Multiple executors are capable of executing a single SQL query task
in parallel.

During query processing, PieCloudDB creates several processes to handle parallel
query tasks. If Motion operations are involved, data must be transferred between
executors through the Interconnect's ic-proxy. When a query plan includes a
Motion operation, the plan is divided and distributed across the endpoints
involved in the data transfer.

When executing parallel queries, each executor runs several processes in parallel,
with each slice of the query plan assigned to at least one worker process, which
operates independently on its portion of the query plan.

The concept of PieCloudDB's ic-proxy is illustrated in the figure below.

In scenarios involving parallel queries, the example uses the data transfer process
from executor (1) of Slice1 to executor (2) of Slice2 to explain how multi-process
ic-proxy transfers Motion data.

1. Executor (1) in Slice1 sends data to its corresponding ic-proxy1.
2. Upon receiving the data, ic-proxy1 of executor (1) routes it to ic-proxy1 on

executor (2) within Slice1.

15

2 Introduction to PieCloudDB

3. The ic-proxy1 on executor (2) within Slice1 then routes the data to the execution
process corresponding to Query Executor (QE) in Slice2, based on the ic-proxy
Key.

4. The QE in Slice2 then sends the data to its corresponding ic-proxy (either ic-
proxy1 or ic-proxy2).

5. The ic-proxy (either ic-proxy1 or ic-proxy2) on executor (2) in Slice2 sends the
data to the coordinator's ic-proxy (either ic-proxy1 or ic-proxy2).

6. Finally, the results are returned to the Query Dispatcher (QD) of Slice3 through
the coordinator's ic-proxy (either ic-proxy1 or ic-proxy2).

Note that the receiving and sending ends of ic-proxy_i between different
executors or between an executor and the coordinator are uniquely
corresponding; for example, ic-proxy_1 can only accept data from or send data
to ic-proxy_1.

The coordinator and executor communicate with ic-proxy through Domain
Sockets. For instance, when the coordinator or an executor sends data to an ic-
proxy, the ic-proxy process, acting as the server, listens for this connection upon
startup, waiting for the coordinator or executor to establish a connection and send
data. Since each ic-proxy process does not reside on the same executor (physical
machine), inter-process data transfer is conducted over network Sockets.

Use the parameter pdb_ic_proxy_num_worker to set the number of ic-proxy
processes launched on the coordinator and executors. Both the coordinator and
executors should start the same number of ic-proxy processes. The value range
for this parameter depends on the network bandwidth of the physical machine,
with a minimum value of 1. This is also the default value, indicating that multi-
process ic-proxy is not enabled.

The pdb_ic_proxy_num_worker parameter is typically configured during the
initial deployment. It is important to note that changes to this parameter's value
require a restart of the virtual data warehouse to take effect.

2.3.3 LocalCache
LocalCache in PieCloudDB manages local file caches and offers capabilities for
file uploads, downloads, error processing, cache querying, and cache clearing. It
efficiently minimizes network communication costs associated with fetching files
from cloud storage services like S3 and helps reduce latency during queries.

Tip:

This feature is available in PieCloudDB version 2.13.0 and later versions.

Application Scenarios

LocalCache retains historical query records for files, making it ideal for situations
where the same or a few tables are accessed repeatedly. However, in scenarios
with numerous queries across different tables, the historical cache may be

16

2 Introduction to PieCloudDB

replaced and purged, which could potentially not provide a significant boost to
query performance.

Feature Details

PieCloudDB has separated file uploading and downloading from the Backend,
assigning these tasks to the LocalCache module. As a result, the Backend does
not need to interact directly with cloud storage services such as S3. Instead, it
sends query requests to LocalCache, which then carries out the corresponding file
operations based on the requests from the Backend.

The diagrams below depict the file reading process in two scenarios: 'without
local cached files' and 'with local cached files'.

If LocalCache is enabled, the existing local cache files for the database will persist
after a restart and can continue to be utilized.

To utilize the LocalCache feature, you need to configure the following parameter:

• pdb_janm_enable_disk_cache setting determines whether the LocalCache
feature is activated. 'ON' enables the feature, while 'OFF' disables it. If
LocalCache is disabled, files will be directly loaded into memory without being
cached on the local disk. The following example demonstrates how to enable
LocalCache.

SET pdb_janm_enable_disk_cache='on';

• gmemos.local_cache_usage configures the cache space size for LocalCache,
with a default value of 10240. It is recommended that the minimum cache size
be set to 'BlockSize * concurrency level'. Values below this threshold may cause
some threads to enter a waiting state, thereby reducing query performance.

The larger the cache space, the more files can be cached, and the higher the
cache hit rate, resulting in better performance. If there is insufficient disk space
available for local caching due to low local disk capacity or other reasons, it

17

2 Introduction to PieCloudDB

is advised to disable the LocalCache feature. If the current cache space is full,
new query requests will trigger a cleanup operation.

• gmemos.single_table_constrict_percentage sets the maximum
percentage of cache space that can be occupied by single-table caches in
LocalCache. To prevent excessive consumption of cache by large table data
during reads, ensure that the value of 'single_table_constrict_percentage *
local_cache_usage' is greater than the BlockSize.

Additionally, the function pdb_get_local_cache_hit_rate() can be used to
query the cache hit rate and other information for the current Segments. The
reference command is as follows:

=> CREATE EXTENSION pdb_internal_tools;

=> SELECT * FROM pdb_get_local_cache_hit_rate();
 seg_id | cache_size | cache_file_count | hit_query_count | total_query_count | hit_rate
--------+------------+------------------+-----------------+-------------------+----------
 0 | 847 | 43 | 50 | 354 | 14.12%
 1 | 836 | 42 | 38 | 354 | 10.73%
 2 | 856 | 43 | 40 | 354 | 11.30%
(3 rows)

Details for the pdb_get_local_cache_hit_rate() function are as follows:

Fields Data Types Details

seg_id smallint Segment ID

cache_size bigint Existing Cache Size

cache_file_count bigint Numbers of Cache Files

hit_query_count bigint Cache Hits

total_query_count bigint Cache Requests

hit_rate text Hit Rate

18

3 Deploy PieCloudDB Community Edition

3 Deploy PieCloudDB Community Edition

3.1 Overview of PieCloudDB Community Edition
Deployment

A typical PieCloudDB cluster comprises computing services (including a
coordinator and multiple executors), metadata services, and object storage
services. The PieCloudDB Community Edition offers a deployment solution with an
all-inclusive image that includes all the essential services mentioned. It facilitates
a One-Command deployment process for the PieCloudDB cluster.

The PieCloudDB Community Edition deployment image encompasses computing
services, including a coordinator and three executors; FoundationDB services;
MinIO object storage services; and metadata caching services. Additionally, it
includes the PieCloudDB Cluster Controller (PDBCC) and two PieCloudDB Cluster
Management Agents (PDBCAs).

Deployment Methods
The PieCloudDB Database Community Edition supports the following two
containerized deployment methods:

• Deploy PieCloudDB Using the Online Installer
• Deploy PieCloudDB Using the Offline Installer

Environment Preparation
Ensure that the system meets the following prerequisites prior to deployment:

• Ensure that you have a Linux system with an x86 architecture and that Docker
is installed.

• It is recommended to allocate at least 8 GB of RAM and 10 GB of disk storage
for Docker.

• Install the PostgreSQL client, psql.To do so, follow these commands:

• Ubuntu Operating System:

sudo apt install postgresql-client

• Centos Operating System

sudo yum install postgresql

Execute the command psql --help. If the help information for psql is
displayed, it confirms that the installation has been successful.

19

3 Deploy PieCloudDB Community Edition

3.2 Deploy PieCloudDB Using the Online Installer
This chapter describes how to deploy PieCloudDB Community Edition using the
online installer. The online installer downloads the PieCloudDB images from
Docker Hub.

Log into the deployment environment with a user account that has sudo
privileges, and then follow the steps below to deploy the PieCloudDB Community
Edition:

1. Launch the PieCloudDB Community Edition image using the following Docker
command:

sudo docker run -p 5432-5442:5432-5442 --name pieclouddb -itd openpietsp/
pieclouddb-ce-allin1:latest

2. Examine the logs to verify that the PieCloudDB deployment has been
successful.

sudo docker logs -f pieclouddb

Here is an example of the output:

2024/08/12 03:12:10 Cluster created
2024/08/12 03:12:10 clusterid:1 port:6000 hostname:"127.0.0.1" address:"127.0.0.1"
 datadir:"/workspace/apps/pdb_data/ca-segment/openpie/1/6000"
2024/08/12 03:12:10 clusterid:1 contentid:1 port:6001 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-segment/openpie/1/6001"
2024/08/12 03:12:10 clusterid:1 contentid:2 port:6002 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-segment/openpie/1/6002"
2024/08/12 03:12:10 clusterid:1 contentid:-1 port:5432 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-coordinator/
openpie/1/5432"

After deployment, connect to PieCloudDB using the psql command and perform
a test to verify the setup, see Connect to PieCloudDB Using the psql Command for
Testing.

3.3 Deploy PieCloudDB Using the Offline Installer
This chapter describes how to deploy the PieCloudDB Community Edition with the
offline installer. Use the offline installer if the host to which you are deploying
PieCloudDB does not have an Internet connection.

Log into the deployment environment with a user account that has sudo
privileges, and then follow the steps below to deploy the PieCloudDB Community
Edition:

20

3 Deploy PieCloudDB Community Edition

1. Download the offline installer package for PieCloudDB Community Edition.

wget https://pieclouddb.oss-cn-beijing.aliyuncs.com/community/pieclouddb-ce-
allin1.tar.gz

2. Extract the downloaded offline installer package for PieCloudDB Community
Edition to the desired directory.

tar -zxvf pieclouddb-ce-allin1.tar.gz

Here is an example of the output:

./pieclouddb-ce-allin1/

./pieclouddb-ce-allin1/start-pieclouddb.sh

./pieclouddb-ce-allin1/pieclouddb-ce-allin1.tar

3. Navigate to the installer directory and execute the script start-
pieclouddb.sh to initialize PieCloudDB.

cd pieclouddb-ce-allin1
sudo bash start-pieclouddb.sh

Here is an example of the output:

Loaded image: reg.dev.openpie.com/release/pieclouddb-ce-allin1:latest
pieclouddb is starting
print log: docker logs -f pieclouddb

4. Check the logs to verify that the deployment of PieCloudDB has been
successful.

sudo docker logs -f pieclouddb

Here is an example of the output:

2024/08/12 03:29:42 Cluster created
2024/08/12 03:29:42 clusterid:1 port:6000 hostname:"127.0.0.1" address:"127.0.0.1"
 datadir:"/workspace/apps/pdb_data/ca-segment/openpie/1/6000"
2024/08/12 03:29:42 clusterid:1 contentid:1 port:6001 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-segment/openpie/1/6001"
2024/08/12 03:29:42 clusterid:1 contentid:2 port:6002 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-segment/openpie/1/6002"
2024/08/12 03:29:42 clusterid:1 contentid:-1 port:5432 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-coordinator/
openpie/1/5432"

After deployment, connect to PieCloudDB using the psql command and perform
a test to verify the setup, see Connect to PieCloudDB Using the psql Command for
Testing.

21

3 Deploy PieCloudDB Community Edition

3.4 Connect to PieCloudDB Using the psql Command
for Testing

After deployment, connect to PieCloudDB using the psql command and perform
a test to verify the setup.

The following connection example utilizes the default user 'openpie' and the
default database 'openpie'.

psql -h127.0.0.1 -p5432 -Uopenpie -dopenpie

Execute the following simple SQL statements to test the functionality of your
PieCloudDB installation:

openpie=# CREATE DATABASE test;
CREATE DATABASE

openpie=# \c test;
You are now connected to database "test" as user "openpie".

test=# CREATE TABLE t1(id int);
NOTICE: distribution policy forced to random for current relation with access method: janm
CREATE TABLE

test=# INSERT INTO t1 VALUES(1),(2),(3);
INSERT 0 3

test=# SELECT * FROM t1;
 id

 2
 1
 3
 (3 rows)

22

4 Manage PieCloudDB

4 Manage PieCloudDB

4.1 Overview of PieCloudDB Management
The PieCloudDB Community Edition includes the pdbcli command-line utility
for managing virtual data warehouses. This utility is pre-packaged within the
installation package (allInOne.tar.gz), eliminating the need for users to install it
separately.

Attention:

sudo privileges are required to execute the pdbcli command within a Docker
container.

4.2 Add a New Virtual Data Warehouse
The pdbcli cluster create command is used to create and add a new virtual
data warehouse. The --cluster-size option specifies the number of executors
within the virtual data warehouse, and the --tenant option specifies the user.

Note that the ports for the new virtual data warehouse are incremented based on
the initial port number. The default initial port for the coordinator is 5433, and the
default initial ports for the three executors are 6003, 6004, and 6005.

The following example shows how to create a virtual data warehouse with three
executors for the default user 'openpie'.

sudo docker exec -it piedb pdbcli cluster create --cluster-size 3

23

4 Manage PieCloudDB

Here is an example of the output:

2024/08/08 09:11:47 Tenant openpie exist
2024/08/08 09:11:47 Allocate QD on coordinator
2024/08/08 09:11:47 running initdb for tenant openpie cluster 2
2024/08/08 09:11:48 initdb for tenant openpie cluster 2 finished
2024/08/08 09:11:48 PrepareSegment 2:-1 on coordinator
2024/08/08 09:11:48 PrepareSegment cluster 2 content 0 on segment
2024/08/08 09:11:48 PrepareSegment cluster 2 content 1 on segment
2024/08/08 09:11:48 PrepareSegment cluster 2 content 2 on segment
2024/08/08 09:11:48 cluster 2 registered
2024/08/08 09:11:48 qd: 127.0.0.1:5433
2024/08/08 09:11:48 Cluster created
2024/08/08 09:11:48 clusterid:2 port:6003 hostname:"127.0.0.1" address:"127.0.0.1"
 datadir:"/workspace/apps/pdb_data/ca-segment/openpie/2/6003"
2024/08/08 09:11:48 clusterid:2 contentid:1 port:6004 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-segment/openpie/2/6004"
2024/08/08 09:11:48 clusterid:2 contentid:2 port:6005 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-segment/openpie/2/6005"
2024/08/08 09:11:48 clusterid:2 contentid:-1 port:5433 hostname:"127.0.0.1"
 address:"127.0.0.1" datadir:"/workspace/apps/pdb_data/ca-coordinator/openpie/2/5433"

The output information indicates that the newly created virtual data warehouse
has an ID of 2. The coordinator, identified by a content ID of -1, runs on port 5433,
and the three executors, identified by content IDs of 0, 1, and 2, operate on ports
6003, 6004, and 6005, respectively.

4.3 Start a Virtual Data Warehouse
The pdbcli cluster start command is used to initiate the virtual data
warehouse online. The virtual data warehouse created and added via the pdbcli
cluster create command only completes the necessary initialization tasks,
such as setting up directories. The --cluster option is used to specify the ID of
the virtual data warehouse.

The following example demonstrates how to start a virtual data warehouse with
an ID of 2.

sudo docker exec -it piedb pdbcli cluster start --cluster 2

Here is an example of the output:

2024/08/08 09:25:34 db 0 started by agent segment
2024/08/08 09:25:34 db 1 started by agent segment
2024/08/08 09:25:34 db 2 started by agent segment
2024/08/08 09:25:34 db -1 started by agent coordinator

4.4 Stop a Virtual Data Warehouse
The pdbcli cluster stop command is used to stop a virtual data warehouse,
thereby releasing CPU and memory resources.

24

4 Manage PieCloudDB

The following example demonstrates how to stop a virtual data warehouse with
an ID of 2.

sudo docker exec -it piedb pdbcli cluster stop --cluster 2

Here is an example of the output:

2024/08/08 09:34:10 db 0 stopped by agent segment
2024/08/08 09:34:10 db -1 stopped by agent coordinator
2024/08/08 09:34:10 db 1 stopped by agent segment
2024/08/08 09:34:10 db 2 stopped by agent segment

4.5 Resize a Virtual Data Warehouse
A virtual data warehouse can be scaled out or in by increasing or decreasing the
number of executors as needed, with the coordinator remaining static as a single
instance.

The pdbcli cluster resize command is used to adjust the number of executors
in a virtual data warehouse. The --cluster option specifies ID of virtual data
warehouse's ID, and the --cluster-size option specifies the desired number
of executors. It is important to ensure that the target virtual data warehouse is
stopped before performing the resize operation.

The following example demonstrates how to set the number of executors to 4 for
a virtual data warehouse with an ID of 2.

sudo docker exec -it piedb pdbcli cluster stop --cluster 2
sudo docker exec -it piedb pdbcli cluster resize --cluster 2 --cluster-size 4

Here is an example of the output:

2024/08/08 09:40:25 PrepareSegment cluster 2 content 3 on segment

Note that once the number of executors in a virtual data warehouse has been
modified, it is necessary to restart the virtual data warehouse for the changes to
take effect. Here is an example:

sudo docker exec -it piedb pdbcli cluster start --cluster 2

Here is an example of the output:

2024/08/08 09:42:28 db 0 started by agent segment
2024/08/08 09:42:28 db 1 started by agent segment
2024/08/08 09:42:28 db 2 started by agent segment
2024/08/08 09:42:28 db 3 started by agent segment
2024/08/08 09:42:28 db -1 started by agent coordinator

25

4 Manage PieCloudDB

The output information above indicates that the virtual data warehouse has one
coordinator, identified by a content ID of -1, and four executors, each with content
IDs of 0, 1, 2, and 3.

4.6 Configure Virtual Data Warehouse GUC
The pdbcli cluster config command is used to reset the configuration
settings of a virtual data warehouse. The --cluster option specifies the ID of
the virtual data warehouse, the --name option specifies the parameter to be
modified, and the --value option specifies the new value for that parameter.
Please be aware that you must restart the virtual data warehouse for the changes
to take effect.

The following example demonstrates how to set the value of
pdb_parallel_factor to 3 for a virtual data warehouse with an ID of 2.

sudo docker exec -it piedb pdbcli cluster config --cluster 2 --name pdb_parallel_factor --
value 3

If the command executes successfully, it will display the following message:

Config success

Then, to ensure the changes take effect, restart the virtual data warehouse by
running the following command:

sudo docker exec -it piedb pdbcli cluster stop --cluster 2
sudo docker exec -it piedb pdbcli cluster start --cluster 2

Connect to the database and use the SHOW statement to verify if the changes have
taken effect:

openpie=# show pdb_parallel_factor;
 pdb_parallel_factor

 3
(1 row)

4.7 View Virtual Data Warehouse Details
The pdbcli cluster list command retrieves information about the virtual
data warehouses that currently exist. The --tenant option specifies the user.

The following example demonstrates how to view details of all virtual data
warehouses for the default user 'openpie'.

sudo docker exec -it piedb pdbcli cluster list

26

4 Manage PieCloudDB

Here is an example of the output:

clusterid:1 contentid:-1 port:5432 hostname:"127.0.0.1" address:"127.0.0.1" datadir:"/
workspace/apps/pdb_data/ca-coordinator/openpie/1/5432"
clusterid:2 contentid:-1 port:5433 hostname:"127.0.0.1" address:"127.0.0.1" datadir:"/
workspace/apps/pdb_data/ca-coordinator/openpie/2/5433"

Use the --cluster option in the command to specify the ID and view detailed
information for a particular virtual data warehouse. The following example
demonstrates how to check the details for a virtual data warehouse with an ID of 2.

sudo docker exec -it piedb pdbcli cluster list --cluster 2

Here is an example of the output:

clusterid:2 contentid:-1 port:5433 hostname:"127.0.0.1" address:"127.0.0.1" datadir:"/
workspace/apps/pdb_data/ca-coordinator/openpie/2/5433"
clusterid:2 contentid:0 port:6003 hostname:"127.0.0.1" address:"127.0.0.1" datadir:"/
workspace/apps/pdb_data/ca-segment/openpie/2/6003"
clusterid:2 contentid:1 port:6004 hostname:"127.0.0.1" address:"127.0.0.1" datadir:"/
workspace/apps/pdb_data/ca-segment/openpie/2/6004"
clusterid:2 contentid:2 port:6005 hostname:"127.0.0.1" address:"127.0.0.1" datadir:"/
workspace/apps/pdb_data/ca-segment/openpie/2/6005"

4.8 Connect to a Virtual Data Warehouse Using a Client
The PieCloudDB Community Edition currently supports client connections,
including those made via psql and DBeaver, to virtual data warehouses.

Connect via Postgres Client PSQL
The format for connecting to a virtual data warehouse using the PostgreSQL client
(psql) is as follows:

psql -h <IP address> -U <username> -p <port number> -d <database name>

Here is an example：

psql -h 192.x.x.x -U david -p 5432 -d openpie

Connect via DBeaver
The steps to connect to a virtual data warehouse using DBeaver are outlined
below:

1. Log in to DBeaver, go to Database > New Database Connection, select
PostgreSQL, and configure the host, database, username, and password.

27

4 Manage PieCloudDB

2. Click Test Connection to verify the connection to the database. The following
figure illustrates an example of a successful connection.

Then click OK to close the window.
3. Click Finish to complete setup for the database connection.
4. Click SQL to select the configured database connection, and then click Select

to add an SQL file.

28

4 Manage PieCloudDB

5. Create a new table named test1 in the 'openpie' database, insert sample data,
and then run an SQL query to verify the results.

CREATE TABLE test1(id int);
INSERT INTO test1 VALUES (1),(2),(3);

SELECT * FROM test1;

The results are shown in the figure below.

29

4 Manage PieCloudDB

Connect via Python psycopg2
To connect to a PostgreSQL database using the psycopg2 library in Python, ensure
that psycopg2 is installed in your Python environment. Here is an example of how
to establish a database connection:

import psycopg2
conn=psycopg2.connect(host="1**.***.***",
 port="5432",
 dbname="openpie",
 user="openpie",
 password="****",
 sslmode="disable")
cursor=conn.cursor()
cursor.execute("select * from pg_roles limit 5")
result=cursor.fetchall()

30

5 Import and Export Data

5 Import and Export Data

5.1 Import Data
PSQL is supported in PieCloudDB for executing the COPY command, which
facilitates the import of data from files or standard input into tables.

The COPY command operates in parallel, meaning that the Query Dispatcher (QD)
divides the data file into slices and simultaneously distributes these slices to
different executors for parsing and loading.

Both PieCloudDB and the client can utilize STDIN and STDOUT to transfer data
within the command-line environment. When connected via psql, the \copy
command can be used to specify the file path on the client host.

Data Format
The input format for the COPY FROM command is determined by the FORMAT
parameter, which accepts 'text', 'csv' (for comma-separated values), and 'binary'
as valid values, with 'text' being the default. Additionally, the DELIMITER option
allows you to specify different characters as value delimiters.

The syntax for COPY FROM command is as follows:

COPY table_name FROM 'path_to_filename' WITH (FORMAT format_name [, DELIMITER
 'delimiter_character']);

CSV files use commas to separate values. By default, text files use tabs as
delimiters, but you can specify different characters as value delimiters using the
DELIMITER option.

The following example demonstrates the use of the vertical bar (|) character as
the value delimiter for a text file.

COPY table_name FROM 'path_to_filename' WITH (FORMAT text, DELIMITER '|');

Input data is parsed based on the ENCODING option or the current client encoding,
and output data is encoded using either the ENCODING setting or the client's
current encoding.

By default, PieCloudDB uses the client's default encoding. You can change this
setting using the ENCODING option.

The following example demonstrates changing the file encoding to 'latin1'.

COPY table_name FROM 'path_to_filename' WITH (ENCODING 'latin1');

31

5 Import and Export Data

Load Data From Host Files
When using the COPY command to import data from a host file, the PieCloudDB
server needs to open, read, and load the file's content into the target table. Users
must have INSERT privileges for the target table as well as the necessary file read
privileges.

The COPY FROM command requires the file location to be specified using either
an absolute path on the host or a relative path to the data directory. The syntax
is as follows:

COPY table_name FROM 'path_to_filename';

The following example demonstrates how to copy data from a host file into the
table 'country'.

COPY country FROM '/usr1/sql/country_data';

Load Data from STDIN
The STDIN channel utilizes the standard input to provide data directly to the server
process. Once the COPY FROM STDIN command is executed, the server backend
begins accepting data, which continues until a line containing only a dot (.) is
encountered.

The syntax for the COPY FROM STDIN command is as follows:

COPY table_name FROM STDIN;

The following example imports data into the table t via STDIN. Note that the
column delimiter for each line is a tab.

=> CREATE TABLE t (id INT, name TEXT);
=> COPY t from STDIN;
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself, or an EOF signal.
>> 1 John
>> 2 Jane
>> 3 Alice
>> \.
COPY 3

Load Data From Client Files
Unlike the COPY SQL command, the \copy command in psql loads data by
invoking COPY FROM STDIN to send data from the psql client to the server's
background process. All files must reside on the host where the psql client is
running and must be accessible by the user executing the client.

32

5 Import and Export Data

Once the COPY FROM STDIN command is initiated, the server backend begins
to accept data, continuing until a line containing only a dot (.) is encountered.
Psql encapsulates these capabilities into the \copy command, with the syntax as
follows:

\copy table_name FROM 'path_to_filename';

The example below demonstrates the use of the command to copy data from the
client file 'country_data.text' into the table 'country'.

\copy country FROM '/workspace/country_data';

5.2 Export Data Using COPY TO
PieCloudDB supports the use of PSQL to execute the COPY command for exporting
data from tables to files or standard input.

You can use the COPY TO command to copy the contents of a table to a file, and
using this command requires that the user has SELECT privileges on the table.
The syntax is as follows:

COPY table_name TO 'path_to_filename';

The COPY TO command can be used to copy the results of a SELECT query to a
file. If specific columns are specified, the COPY TO command will copy only the
data from those columns. This command is applicable only to regular tables and
cannot be used for views. It does not copy rows from subtables or subpartitions

The COPY TO command supports the specification of file formats, field delimiters,
representations of null values, and other options. These parameters can be
defined using the WIT clause, followed by the appropriate options.

The following example illustrates how to export data from the table 't' in text
format, with fields delimited by '|', and null values represented as 'N/A'.

COPY t TO '/path/to/output.txt' WITH (FORMAT text, DELIMITER '|', NULL 'N/A');

The COPY TO STDOUT command provides a standard output channel for data in
a table. The syntax for this command is as follows:

COPY table_name TO STDOUT;

33

5 Import and Export Data

The example below demonstrates how to export data from the table t via STDOUT,
with the data displayed in text format on the terminal.

=> COPY t TO STDOUT;
1 John
2 Jane
3 Alice
COPY 3

If you need to export data from a table to the local client, use the \copy command,
which invokes the COPY TO STDIN command. The syntax is as follows:

\copy table_name TO 'path_to_filename';

The following example demonstrates how to export the column 'name' from the
table 't' to a client-side file named 'data'.

\copy (SELECT name FROM t) TO '/workspace/data' WITH (FORMAT csv);

5.3 Format Data Files
When importing and exporting data, the COPY command supports specifying the
text or CSV (Comma-Separated Values) data format. Therefore, external data must
be properly formatted to be accurately read by PieCloudDB.

Format Rows
Text files use the Line Feed (LF) character to separate different rows, ensuring that
the text is displayed in the correct format on the screen or in print output.

Line Feeds vary depending on the operating system and application. PieCloudDB
expects rows of data to be separated by the character LF (Line Feed, \n or 0x0A),
CR (Carriage Return, \r or 0x0D), or CRLF (Carriage Return + Line Feed, \r\n or 0x0D
0x0A). On UNIX or UNIX-like operating systems, LF is the standard representation
for a new row. Operating systems like Windows use CR or CRLF. PieCloudDB
supports all these line representations as row delimiters.

Format Columns
The tab character is often used to create tables, align text and columns in code, or
create indentations in documents. The default column delimiter for text files is the
horizontal tab character (TAB, 0x09), and for CSV files, it is the comma character
(0x2C).

When defining a data format, use the COPY or CREATE EXTERNAL TABLE
command with the DELIMITER option to designate a single-character column

34

5 Import and Export Data

delimiter. The delimiter character must appear between any two data value fields
and should not be placed at the beginning or end of a row.

The following example shows that the vertical bar character (|) is used as the
delimiter.

data value 1|data value 2|data value 3

The following example demonstrates the use of the vertical bar character (|) as a
column delimiter in the CREATE EXTERNAL TABLE command.

CREATE EXTERNAL TABLE ext_table (name text, date date)
 LOCATION ('gpfdist://<hostname>/filename.txt)
 FORMAT 'TEXT' (DELIMITER '|');

Identify NULL Values
Identifying NULL values is crucial for handling unknown data or blank values in
columns or fields. Users may designate a string to represent null values in data
files.

The default NULL string representation is \N(a backslash followed by the letter
'N') for text format, or an unquoted empty string for CSV format.

When defining a data format, the COPY command uses the NULL option to
designate a string that identifies null values. The following example demonstrates
using 'N/A' to indicate null values.

COPY t TO '/path/to/output.txt' WITH (FORMAT text, DELIMITER '|', NULL 'N/A');

Escaping
PieCloudDB reserves the following two types of characters for special purposes:

• Delimiter characters used in data files to separate columns or fields, such as
the vertical bar (|) and the comma (,).

• Line feed characters used in data files to denote a new row, such as '\n'.

These characters, when present in the data, must be escaped so that PieCloudDB
recognizes them as data rather than as delimiters or line breaks.

By default, the escape character for text format files is a backslash (\), while for
CSV format files, it is a double quotation mark (").

Escaping in Text Formatted Files

Execute the COPY command with the ESCAPE option to designate an alternative
escape character. If the escape character appears in the data, it must escape itself.

35

5 Import and Export Data

The following example demonstrates importing the following data into a table
with three columns:

• A backslash = \
• A vertical bar = |
• An exclamation point = !

If a user designates the delimiter character as the vertical bar (|) and the escape
character as the backslash (\), the formatted row in the data file would appear
as follows:

A backslash = \\ | A vertical bar = \| | An exclamation point = !

Users can utilize the escape character to escape decimal and hexadecimal
sequences. The escaped values are transformed into their equivalent characters
when loaded into PieCloudDB. The following example demonstrates using the
escape character to represent its equivalent hexadecimal value (\0x26) or octal
value (\046) to escape the ampersand character (&).

The ESCAPE option in the COPY command allows users to deactivate escaping in
text-formatted files as follows.

ESCAPE 'OFF'

This feature is particularly useful when the input data contains a high frequency
of backslashes, such as in web server log files.

Escaping in CSV-Formatted Files

By default, the escape character for CSV-formatted files is a double quotation
mark ("). Users can designate a different escape character using the ESCAPE
option in the COPY command. If the escape character appears in the data, it must
escape itself.

The following example demonstrates how to import the data below into a table
with three columns:

• Free trip to A,C
• 3.69
• Special rate "2.75"

If the user designates the delimiter character as a comma (,) and the escape
character as a double quotation mark ("), the formatted row in the data file will
appear as follows:

"Free trip to A,C","3.69","Special rate ""2.75"""

36

5 Import and Export Data

Users can also enclose entire fields within double quotes to ensure that any
leading or trailing whitespace is retained. The following example demonstrates
how spaces at the start and end of the text within each field are preserved:

" Free trip to A,B ","5.89 ","Special rate ""1.79"" "

Attention:

In CSV-formatted files, all characters are significant. If the data being imported
comes from a system that uses padding with spaces to achieve fixed width, it
is necessary to preprocess the CSV file by removing trailing whitespace before
importing.

5.4 Character Set
PieCloudDB supports a variety of character sets, including single-byte character
sets such as the ISO 8859 series, and multi-byte character sets like EUC, UTF-8,
and Mule internal encoding.

The server-side character set is defined during the database initialization process,
with UTF-8 being the default character set, although it can be changed. Clients
can transparently use all supported character sets; however, some character sets
are not supported as server encodings.

When data is imported, PieCloudDB converts the data from the client-specified
encoding to the server encoding. Conversely, when data is exported to the client,
PieCloudDB transforms the data from the server's character encoding to the client-
specified encoding.

Data files must use a character encoding that PieCloudDB can recognize. If they
contain illegal or unsupported encoding sequences, the data files will generate
an error upon loading.

Noted that data files generated on the Microsoft Windows operating system need
to be processed with the dos2unix system command to remove Windows-specific
characters before being loaded into PieCloudDB.

The client's character encoding can be set through the server configuration
parameter client_encoding. An example is as follows:

SET client_encoding TO 'latin1';

The RESET command is used to revert the client's character encoding to its default
value. The syntax of the command is as follows:

RESET client_encoding;

37

5 Import and Export Data

The SHOW command is used to display the current client-side character encoding
settings. The syntax of the command is as follows:

SHOW client_encoding;

38

6 Glossary

6 Glossary

A
Analyze

PieCloudDB collects statistical metadata from the tables within a data warehouse
and stores the results in system tables. The query optimizer utilizes this data to
devise the most effective execution plan for queries.

C
Catalog Service

PieCloudDB provides management and storage services for metadata, which
is essential for the collection, organization, storage, and management of data
assets.

The Catalog Service helps organizations better understand, manage, and
leverage their data assets. At the metadata layer, PieCloudDB offers a dedicated
service to ensure efficient access and high availability of metadata.

Cloud Native

Cloud-native refers to systems or applications that are designed, developed, and
operated entirely on cloud platforms, fully leveraging the advantages of cloud
computing models.

Coordinator

In a PieCloudDB virtual data warehouse, the coordinator node is responsible for
coordination and management. It primarily handles SQL requests from clients,
generates query plans, distributes execution information, manages metadata,
and compiles final results.

D
Database

A database is composed of schemas and tables, which includes only database
objects and excludes computational resources. In PieCloudDB, all data is
preserved and managed within databases. Users can create multiple databases
to ensure data integrity and security through segregation.

Database Object

39

6 Glossary

A database object is a data structure designed to store or reference data. Tables
are a common type of database object, and other objects include indexes,
stored procedures, functions, sequences, views, etc. You can create database
objects and become the owners of these objects. You can also manage your own
database permissions for other roles, such as granting read and write access.

E
elastic Massive Parallel Processing(eMPP)

elastic Massive Parallel Processing (eMPP), similar to traditional MPP, is a
computational framework that employs multiple processors to concurrently
manage a single program, forming a key component of database architecture.

eMPP capitalizes on cloud computing capabilities to separate database
metadata, storage, and computation, with metadata operating as a distinct
system that stores data on users, database objects, and computational nodes.
When performing data queries, all computational tasks retrieve from the same
metadata set to execute their calculations.

Once the eMPP system receives a computational task, the coordinator parses the
task (e.g., a query) using a query planner and optimizer, transforming it into
a plan that includes multiple sub-queries. The coordinator then assigns these
tasks to the executors. The computational nodes dynamically adjust based on the
specifics of the query to optimize computational efficiency.

ETL

ETL, an acronym for Extract, Transform, and Load, refers to the comprehensive
data processing workflow that involves extracting data from a source,
transforming it to meet the specifications of the target system, and then loading
it into the destination.

Executor

Executors are responsible for executing tasks that are delegated by the
coordinator within a virtual data warehouse. A virtual data warehouse contains
one or multiple executors to execute the same SQL query task across multiple
executors in parallel.

Execution Plan

The Database Management System (DBMS) constructs an execution plan based on
the query statement, table structure, index statistics, and additional information
when executing a query or operation. It provides the most efficient execution path
for the query based on the optimizer's algorithms and rules.

40

6 Glossary

G
Global Datasphere

Datasphere, a concept introduced by IDC (International Data Corporation), refers
to the total volume of data generated, collected, or replicated on an annual basis.
It can also refer to all the data stored across various storage media, including hard
drives, SSDs, optical discs, magnetic tapes, and others.

H
High Availability (HA)

High Availability (HA) refers to the characteristic of a system or service that ensures
highly reliable and continuous operation, maintaining business in good operating
status even in the event of service failures.

J
JANM

PieCloudDB features an efficient data caching structure and a new storage engine
named 'JANM', which is primarily designed for object storage and utilized as the
persistent storage layer. Under the eMPP architecture, data is distributed and
elastic.

JANM leverages consistent hashing to ensure data access consistency across each
computational node within the distributed system. This approach minimizes the
data caching volume even during scaling operations.

M
Massive Parallel Processing (MPP)

Massive Parallel Processing (MPP) is a high-performance computing architecture
that harnesses multiple processors to execute a single program concurrently.

Commonly used in advanced database systems, MPP utilizes a cluster where
each node has its own operating system, CPU, and memory to manage
separate portions of the workload. Optimizing data distribution across nodes and
effectively balancing the computational load are critical in designing an MPP
framework.

Metadata

PieCloudDB's metadata is stored separately from user data. It includes not only
the traditional metadata associated with user data, such as names, sizes, and

41

6 Glossary

field information, but also extends to include statistical data about users, user
profiles, and virtual data warehouse details.

Metadata is frequently utilized in PieCloudDB for data functionality development
and performance optimization. For instance, the query optimizer 'Dachi'
leverages statistical metadata to refine query plans.

Q
Query Planner

The Query Planner, a critical component of a database system, receives
query requests and integrates various factors—including the database schema,
indexes, and current system load—to formulate an effective execution strategy. It
undergoes a series of processes, including parsing, analyzing, generating, and
optimizing an execution plan to enhance performance and efficiently deliver the
results.

Query Optimizer

In certain scenarios, the Query Optimizer can further optimize an existing query
plan. In PieCloudDB, the 'Dachi' Query Optimizer manages the entire process, from
receiving a query request to optimizing and executing the query plan.

S
Serverless

The 'Serverless' approach to data warehousing automates all underlying resource
management through the cloud-based virtual data warehouse backend. This
allows users to utilize warehousing services without worrying about server
architecture or technical complexities, thereby providing a seamless and smooth
user experience.

Schema

A schema constitutes the data structure of PieCloudDB, representing a collection
of tables, as well as the functions and views derived from them.

Storage Engine

A component or module within a Database Management System (DBMS) handles
data storage and retrieval, defines how data is organized, and determines how
it is read from or written to physical storage media. JANM is the data storage
foundation of PieCloudDB's computing engine. For more details, see the entry for
JANM.

42

6 Glossary

T
Transparent Data Encryption(TDE)

Transparent Data Encryption (TDE) uses an encryption key, known as the Data
Encryption Key (DEK), to dynamically encrypt and decrypt data in transit between
storage and the application. This process ensures seamless and transparent data
protection for the application.

Tuple

A tuple refers to a set of ordered values that constitute a row or record within
PieCloudDB. A tuple consists of multiple fields or attributes, each with a defined
data type.

V
Virtual Data Warehouse

A virtual data warehouse represents a dynamic cluster of pure computational
resources, such as CPU, memory, and temporary storage, provided by cloud-
based virtual machines. It does not contain actual data but only offers SQL
execution services.

A virtual data warehouse comprises at least one coordinator and multiple
executors, with each node being a virtual resource group that includes CPU,
memory, and disk resources. At the user level, there is no direct access to
information about these nodes; however, users with the appropriate permissions
can see the processes for starting, stopping, and scaling the virtual data
warehouse.

43

	Contents
	Legal Notice
	Trademark Statement
	Disclaimer
	Note

	Preface
	Audience
	Conventions

	1 About PieCloudDB Community Edition
	Product Edition Differences
	Related Documentation

	2 Introduction to PieCloudDB
	2.1 Overview of PieCloudDB
	Core Product Features
	Application Scenarios

	2.2 System Architecture
	2.2.1 Overview of System Architecture
	2.2.2 Computing Layer
	2.2.3 Metadata Layer
	2.2.4 Storage Layer

	2.3 New Features
	2.3.1 Flexible Gang
	Application Scenarios
	Feature Details

	2.3.2 Multi-process ic-proxy
	Application Scenarios
	Feature Details

	2.3.3 LocalCache
	Application Scenarios
	Feature Details

	3 Deploy PieCloudDB Community Edition
	3.1 Overview of PieCloudDB Community Edition Deployment
	Deployment Methods
	Environment Preparation

	3.2 Deploy PieCloudDB Using the Online Installer
	3.3 Deploy PieCloudDB Using the Offline Installer
	3.4 Connect to PieCloudDB Using the psql Command for Testing

	4 Manage PieCloudDB
	4.1 Overview of PieCloudDB Management
	4.2 Add a New Virtual Data Warehouse
	4.3 Start a Virtual Data Warehouse
	4.4 Stop a Virtual Data Warehouse
	4.5 Resize a Virtual Data Warehouse
	4.6 Configure Virtual Data Warehouse GUC
	4.7 View Virtual Data Warehouse Details
	4.8 Connect to a Virtual Data Warehouse Using a Client
	Connect via Postgres Client PSQL
	Connect via DBeaver
	Connect via Python psycopg2

	5 Import and Export Data
	5.1 Import Data
	Data Format
	Load Data From Host Files
	Load Data from STDIN
	Load Data From Client Files

	5.2 Export Data Using COPY TO
	5.3 Format Data Files
	Format Rows
	Format Columns
	Identify NULL Values
	Escaping
	Escaping in Text Formatted Files
	Escaping in CSV-Formatted Files

	5.4 Character Set

	6 Glossary
	A
	C
	D
	E
	G
	H
	J
	M
	Q
	S
	T
	V

